skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Joyce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Xylem conduits have lignified walls to resist crushing pressures. The thicker the double‐wall (T) relative to its diameter (D), the greater the implosion safety. Having safer conduits may incur higher costs and reduced flow, while having less resistant xylem may lead to catastrophic collapse under drought. Although recent studies have shown that conduit implosion commonly occurs in leaves, little is known about how leaf xylem scalesTvsDto trade off safety, flow efficiency, mechanical support, and cost.We measuredTandDin > 7000 conduits of 122 species to investigate howTvsDscaling varies across clades, habitats, growth forms, leaf, and vein sizes.As conduits become wider, their double‐cell walls become proportionally thinner, resulting in a negative allometry betweenTandD. That is, narrower conduits, which are usually subjected to more negative pressures, are proportionally safer than wider ones. Higher implosion safety (i.e. higherT/Dratios) was found in asterids, arid habitats, shrubs, small leaves, and minor veins.Despite the strong allometry, implosion safety does not clearly trade off with other measured leaf functions, suggesting that implosion safety at whole‐leaf level cannot be easily predicted solely by individual conduits' anatomy. 
    more » « less